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On Improving Impedance Probe Plasma Potential Measurements 

 
  

I. Introduction 
 

In earlier works we used spheres of various sizes as impedance probes in 
demonstrating a method of determining plasma potential, φp, when the probe radius  is 
much larger than the Debye length, λD.  The basis of the method in those works 1-4 relies 
on applying a small amplitude signal of fixed frequency to a probe in a plasma and 
measuring the complex reflection coefficient, Γ, for varying  probe bias, Vb.  For a given 
frequency, Re(Zac) (the real part of the complex plasma impedance determined from Γ ) is 
plotted versus Vb , and a minimum predicted by theory occurs at φp

 for a large range of 
electron density, ne

3.  However, the frequency range of the applied signal is restricted as 
we briefly review in this paper. As ne decreases, or the sheath grows to the order of the 
probe radius, the frequency range becomes even more restrictive and, in addition, the 
minimum in Re(Zac) in  experimental data at Vb = φp

  becomes difficult to discern.  Here, 
we extend the range of application of the technique by including further measures useful 
in isolating the inflection point indicative of φp.   These measures extend the analysis by; 
(1) incorporating Γ into the algorithm to search for the minimum at Vb = φp

  , (2)  using 
not only the first derivative of Re(Zac), but also that of Im(Zac) with respect to Vb in 
addition to, (3) using the second derivatives of both.  With these additional indicators, 
both the minimum and the frequency restriction on determining φp become clearer as we 
demonstrate in the data.  In the past, we compared results to a Langmuir probe sweep 
determination of φp and in the present case we extend the comparison to include an 
emissive probe also.  The Appendix addresses the current state of the theory with regard 
to the experimentally observed maximum in Im(Zac).  We concentrate mostly on spherical 
probe data in demonstrating the use of the new indicators although we present limited 
data for a cylinder4 and a disk for comparison purposes. 
 The measurement of plasma potential as done historically with conventional 
Langmuir probes5-8  typically involves either a curve-fitting technique based on the 
intersection of straight line fits to the electron saturation and electron-retarding field 
regions of the probe characteristic; or a measurement of floating potential accompanied 
by the assumption that the difference between floating potential and plasma potential is 
simply Te/e 5,6.  These methods are based on the assumption of a collisionless, stationary 
Maxwellian plasma and are seen to work well in non-flowing plasmas of sufficient 
density.  However, as plasma density decreases, the characteristic IV trace becomes more 
rounded and the inflection point, or “knee”, argued to be plasma potential, is more 

_______________
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difficult to discern.  When plasma sheaths are small with respect to probe size, the probe 
surface collecting area is very nearly the same as that of the sheath with often very little 
change in the sheath radius as the applied voltage is increased.  The current collected in 
this area ( electron saturation current) is that due to random electron current and should 
therefore also show little change as the voltage increases.  This should be true 
independent of probe geometry.  However, as the sheath becomes larger, orbital motions 
of collected electrons (Orbital Motion Limited (OML) theory) must be considered and 
current collection can increase in the electron saturation regime over its thin sheath limit.   
In addition, current collection dependence on applied bias voltage has been shown to vary 
as a function of probe geometry; for example, the IV characteristic of a plane probe 
exhibits a more distinct change of slope than a cylinder which in turn has a more distinct 
break than a sphere in this regime.5   This is further complicated by an increasing Te 
which expands the slope of the IV trace in the electron retarding area.  In addition, unless 
Te is measured by some other means, it is more difficult to determine. 

 In difficult cases such as mentioned above, the inflection point can be more 
confidently identified if the derivative is included in the analysis along with the function. 
This is a commonly used technique in locating, for example, a local extremum of a 
function of one variable by using the derivative with respect to the independent variable.  
This can apply to the Langmuir probe IV trace where the derivative, dIe/dVb , is used in 
combination with Ie where Ie is electron current collected by the probe and Vb is the 
applied probe bias. We demonstrate in Fig (1) for a small cylindrical Langmuir probe that 
the derivative gives a sharper definition of the “knee” than the function alone and 
therefore aids in this determination.  There are often more serious noise issues than seen 
in this example.  In many of these cases applying filtering suppresses random noise and 
hence the effect of the noise on the derivative. The figure displays the unfiltered IV 
characteristic, Fig 1(a), and its derivative trace , Fig 1(b), in the absence of an external 
magnetic field.   The plasma conditions are for an electron density, ne= 4.5x107 cm-3, and 
temperature, Te=2.4 eV.  The neutral gas is argon at a pressure of PN =  2x10-4 Torr.  It is 
easier to determine plasma potential, φp, with the derivative trace accompanying the IV 
characteristic than with the IV trace alone. 

 
 

 
 

Figure 1(a)         Figure 1(b) 
 
 

 
 
 
 
Figure 1(a)      Figure 1(b) 
 

 
The same idea is useful for the impedance probe algorithm developed in earlier 

work.  In this case, when the real part of the plasma impedance, Re(Zac), is plotted    
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versus Vb for a given applied small signal ac frequency,  a minimum is predicted to occur 
at plasma potential, φp

 .3   In analogy to the case of the Langmuir probe above, the 
position of the minimum can be isolated more easily by using dRe(Zac)/dVb in 
conjunction with Re(Zac).   However, as we review in this work, since 

1Re( ) ( ) ,e
ac ac

b

dI
Z R

dV
       (1) 

where Rac is the ac resistance of the plasma, the inverse slope, (dIe/dVb)
-1, is plotted vs Vb                 

(instead of Ie in the Langmuir probe IV characteristic analysis).   Moreover the derivative,   
2 2

2 2
2 2

( ) ,ac e e e
ac

b b b b

dR dI d I d I
R

dV dV dV dV
       (2) 

or, dRac/dVb is directly proportional to d2Ie/dVb
2 and hence ultimately to the determination 

of the electron density distribution function.3 
  

 In addition to using the extended analysis of Re(Zac) data described above, 
Im(Zac) is also available from the basic reflection coefficient, Γ.  Values of reflection 
coefficient Γ are obtained  by measuring the complex voltage V1 at the network analyzer 
port where the cable ending with the probe is connected. The magnitude and phase of 
V1 are compared to the internal voltage source through a simple voltage divider circuit 
shown in Figure 2: 

 

Figure 2 

The complex reflection coefficient is Γ defined as, 

1

0

2
1

V

V
                (3) 

   

where Z0 is the internal input impedance of the network analyzer.   And from Eq. (3), 

 

0 0

0 0

(Re ) Im

(Re ) Im

Z Z Z Z i Z

Z Z Z Z i Z

  
  

  
    (4) 

 

where the network analyzer input impedance, Z0 , is 50 Ω.  We will demonstrate that Γ 
and its first derivative may also be included in a measurement set along with Im(Zac) with 
similar considerations as with Re(Zac) outlined above.   
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A difficulty in the measurement of Γ occurs for low plasma density, in which case 
Z1 >>Z0, V1 ≈ V0 and Γ ≈ 1.  Under these conditions small calibration errors become more 
significant and the derived values of Z become more prone to distortions.  As an 
example of this we plot Re Γ vs Vb for a cylindrical probe for three different densities in 
Figure 3(c).  In these three runs the analyzer frequency was fixed at 1 MHz.  The figure 
demonstrates the effect of a decreasing density (increasing resistance) on the ability of 
the analyzer to detect magnitude differences in Γ from which Re(Zac) and Im(Zac) are 
calculated  i.e., whereas there is a 0.1% variation in Re Γ for the highest density, this 
variation has fallen to an almost undetectable level with approximately a 50% variation in 
density. 
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             Figure 3 
 
II.  Further indicators of plasma potential 
 
II.1  The Plasma Impedance, Z 
 

As reviewed from earlier work3 in Appendix A, we are able to obtain expressions 
for both Re(Zac), Im(Zac) in the frequency range applicable to the model.  In that work, 

 

                                        
2

Re( ) ,
1 ( )

ac
ac

s ac

R
Z

C R



                            (5) 

     
2 2

2

( 1)
Im( )

1 ( )
p ac s p s

ac
ac s

L R C L C
Z

R C

  


 



     (6)  

              
Using the conditions that (ωRacCs)

2 <<1 and ω2LpCs << 1 we have, 
 

     2Im( )ac p ac acZ L R C          (7) 

 
and,        Re( )ac acZ R          (8) 

 
where Lp ~ 1 μH, Cs ~ 1 pF and ω ~ 1 MHz.   
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II.2 The Reflection Coefficient and its derivative 
 
The reflection coefficient, Γ, of Eq (4), which is returned by the network analyzer, is 
expanded as, 

2 2 2 2
0 0

2 2
0

Re( ) Im( ) 2 Im( )

(Re( ) ) Im( )
ac ac ac

ac ac

Z Z Z iZ Z

Z Z Z

  
 

 
                (9) 

with, 
2 2 20

2 2 20

Re( ) (1 ( ) ) Im( )
Re( )

Re
Re( ) (1 ( ) ) Im( )

Re( )

ac ac
ac

ac ac
ac

Z
Z Z

Z
Z

Z Z
Z

 
 

 
               (10) 

and, 

2 2

2 Im( )
Im .

Re( ) Im( )
ac

ac ac

Z

Z Z





                   (11) 

At plasma potential in the frequency range we consider (ω << ωp0 ), we ignore Im(Zac) as 
it is much less than Re(Zac).  Eq. (10) then becomes upon expansion approximately, 

20

0

20

(1 ( ) )
Re( ) 2

Re 1 .
Re( )

(1 ( ) )
Re( )

ac

ac

ac

Z

Z Z
Z Z
Z


  


                (12) 

In this form   is seen to reach a minimum along with Re(Zac) ≈ Rac at plasma potential, 

or, 

                                   0
2

2 Re( )Re
0.

Re( )
p

ac

b b bac

d Z d Zd

dV dV dVZ


 
                             (13) 

 
 
II.3  Im (Zac) and its derivative 
 
Eq. (7)  gives the form of Im(Zac) under our frequency restrictions.  The partial derivative 
with respect to Vb at  φp becomes, 

2Im( ) 2 1
( )

b p b p

pac ac s
ac s

b b ac b s bV V

LZ R C
R C

V V R V C V
 

 
 

   
      

                (14) 

We further analyze portions of this expression in the Appendix.   Note however that since 
we have shown earlier that ∂Rac/∂Vb ≈ 0 at plasma potential, under the conditions 
outlined, we have another indicator of plasma potential if the remaining two contributions 
to this expression can also be shown to be negligible.  Although this is not immediately 
obtainable with the current theory, data below show that Im(Zac) reaches a maximum at 
plasma potential (or very close to it) and therefore that the derivative of Eq. 14 is zero as 
observed in the experiments. 
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III.  Re(Zac)  vs Vbias as a function of frequency and electron density 
 

As a general introduction to the data, and as a review of earlier experimental and 
theoretical conclusions, we show in Figures  4(a) – 4(c) the applied frequency and 
electron density dependence of the minimum in  Re(Zac) at plasma potential for a 
spherical probe (rp = 1.5 inches).  The Figure shows smoothed experimental data for 
Re(Zac) plotted vs applied bias voltage, Vb, for different applied frequencies ranging from 
100 kHz to 3 MHz for three different densities in decreasing order: Figure 4(a) - ne = 
1.7x107 cm-3 (fpe ≈ 37 MHz), Figure 4(b) - ne=2.7x106 cm-3(fpe ≈ 15 MHz), Figure 4(c) – 
ne = 7.6x105 cm-3(fpe ≈ 8 MHz).   The figures are normalized to emphasize the curve 
shape as plasma density decreases. 

  
         Figure 4(a)  Figure 4(b)   Figure 4(c)                           

 
Note that the minima in the curves near plasma potential (Vb = φp ≈ 1 volt) at a given 
density vary with applied frequency.    Earlier work places an upper limit on the applied 
frequency which is approximately that f ≤ fpe/3.  In Figure 4(c) the highest frequency, 3 
MHz, does not meet this requirement and the next highest, 2 MHz, only marginally.  For 
these two curves, no minimum is discernible.  Also, in Figure 4(b) the highest frequency, 
3 MHz, shows no indication of a minimum.  In Figure 4(a) with the highest density, and a 
much higher plasma frequency, all curves tend to show a minimum at or near plasma 
potential.  The data then are generally consistent with the theoretical requirement that 
lower density requires lower applied frequency.3   It is not always clear in some of the 
lower frequencies (100 kHz, 500 kHz) where the minimum lies and that is an issue we 
address in part here in terms of using first derivatives as covered in the Introduction.  We 
also point out that not only are the minima a function of density and applied frequency, 
but also probe size is an important issue since the requirement of a thin sheath with 
respect to rp is the basis of much of the theoretical effort. 
 
  IV. Experimental results for different rf probe geometries 
 

As a brief review of the basis of the plots below, recall that the dc electron current 
collected by a probe in the absence of a magnetic field is Ie = Apenp(Te/2πme)

1/2 where e is 
electron charge, me is electron mass, and Te is electron temperature, with Ap the probe 
collection area.  For Maxwellian electrons, np = n exp(Vp-φp)/Te and so at low frequency 
from Eq. (1) above, the resistive component of the ac impedance, Rac, of a probe biased 
to plasma potential, φp, is (in Gaussian units), 
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1
2

2
Re( ) ( ) ( )

bias p

bias p

e ee
ac ac pV

bias p pV

m TdI
Z R

dV e n A



 




     (15) 

 
The data are for three different probe geometries and a number of fixed 

frequencies and were gotten through measurement of the small-signal ac.  We 
concentrate primarily on a spherical probe insofar as demonstrating the use of Γ and 
Im(Zac).  As in all past work, and that presented here, a network analyzer is used to obtain 
the reflection coefficient from which the real and imaginary parts of the impedance are 
determined.  Eq. (13) relates the derivative of the reflection coefficient, Γ, to that of the 
derivative of Re(Zac) and in particular shows that it goes to zero along with ∂Re(Zac)/∂Vb.  
Further, we note in reference to ongoing work outlined in Appendix A, Eq. (7) relates 
Im(Zac) to Rac and the derivative as covered above in Eq. 14.   The plots of these 
quantities, from which plasma potential is obtained are shown below.  We mention in 
passing that plots of Re(Zac) are used as the primary reference when constructing f(ε).3 
 
IV.1 Spherical Probe 

 For these experiments we used as a probe an aluminum sphere of radius   r 
= 3.8 cm which is connected to an HP8735D Network Analyzer through 50 Ω coaxial 
cable which provides the driving signal.  The connections as described above for the 
cylinder were the same and only the probe itself was changed.  

Figures 5(a) and 5(b) show plots of Re(Zac) and Im(Zac) vs Vbias but at varying ac 
frequency at a fixed density of ne = 3.8 x 107 cm-3.  There is once again a minimum seen 
in Re(Zac) at plasma potential and a maximum in Im(Zac).  At the lowest frequency of 100 
kHz there appears a shift whose origin and dependence on frequency is not understood at 
this time.       
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  Figure 5(a)        Figure 5(b) 

 
Figures 6(a) through 6(f) are contour plots showing the magnitude of Γ and the 

first derivative, dΓ/dVb, versus Vb for varying frequency for three separate densities:  
Figure 6(a,b) ne = 2 x107 cm-3 , Figure 6(c,d) ne = 7.7  x 106  cm-3, Figure 6(e,f) ne = 1 x 
106 cm-3.  These figures demonstrate in a single plot both the effect of varying density 
and frequency of the transmitted signal.  In addition they are meant to stress the utility of 
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the derivative plots when little vague information is available from Re(Zac).  The figures 
demonstrate a gradual loss of information about the plasma potential that occurs with 
increasing frequency as density decreases .and how the additional information provided 
by the first derivative ameliorates this to some degree.  In Figures 6(a,b) and 6(c,d) the 
plasma potential is near zero whereas in Figures 6(e,f) it is near -1 V. ( These values are 
consistent with Langmuir probe results in addition to emissive probe results.)  For the 
highest density of Figure 6(a,b) plasma potential can be more easily determined for a 
wide range of applied frequencies although it tends to drift as a function of frequency; for 
Figure 6(e,f) the frequency range is restricted to less than about 3MHz in Figure 6(e), and 
higher in Figure 6(f) demonstrating, as in all of the derivative plots, additional 
information that is not obvious from the plots of the Γ alone.  (We stress that the 
derivative plots indicate plasma potential by going to zero as is consistent with the 
arguments leading to Eq (13) i.e., the derivative goes to zero while the function Γ goes to 
a minimum) 

     

 
 Figure 6(a)   Figure 6(b)   
 

 
             Figure 6(c)   Figure 6(d) 
 

 
 
 
 Figure 6(e)   Figure 6(f) 
   

      
  
As a further and alternate view of the effect of both density and applied frequency on the 
determination of plasma potential, we present the 3-dimensional surface plots Figures 
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7(a) through 7(f).  These are surface plots of Γ with the first derivative as above.  The low 
ridge on the surface plot and the straight edge on the contour plots to the right are 
indicative of the approximate potential.  The density varies as shown.  Although all of the 
figures show this behavior to some degree, for the higher densities it is more easily 
isolated. 
 

 
Figure 7(a)- ne = 3.6 – 4.4 x 107 cm-3 

 
    Figure 7(b)- ne = 2 x 107 cm-3 
 
 

 
    Figure 7(c)- ne = 7.7 x 106 cm-3 

 
    Figure 7(d)-ne = 2.8 x 106 cm-3 
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    Figure 7(e)- ne = 1x 106 cm-3 

 
    Figure 7(f)- ne = 2 x 105 cm-3 
 
 
IV.2 Cylindrical probe 
 

  The cylindrical probe consists of a stainless steel cylinder with length, L = 15 cm 
and radius, r = 0.16 cm which is connected to the HP8735D Network Analyzer through 
50 Ω also.  This arrangement including the chamber, analyzer and the coupling circuitry 
is shown schematically elsewhere.2  The cylinder is mounted on a 1/4 inch diameter 
ceramic and steel support which is connected to 1/4 inch diameter semi-rigid copper 50 
Ohm coaxial cable.  

Figures 8(a) and 8(b) show Re(Zac) and Im(Zac) vs Vbias at a fixed frequency of 10 
MHz for 3 different densities.  In Figure 8(a) the plot of Re(Zac) shows the inflection 
point minimum as we have demonstrated earlier.  In addition the minimum is seen to drift 
to higher plasma potentials which is also seen by a Langmuir probe.  Moreover Figure 
8(b) shows that Im(Zac) also appears to reach an inflection point at the same voltage for 
the different densities.  Although the data show this apparent consistency our analysis is 
still incomplete theoretically (Refer to Eq. 14 comments and Appendix A)  The applied 
frequency of 10 MHz for the lowest density is at the approximate boundary of the 
requirement that the applied frequency be less than about fpe/3 (fpe ~ 27 MHz for ne = 9 x 
106 cm-3).   
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Figure 8(a)     Figure 8(b)   

  
IV.3 Disk Probe 

The experiments with the disk probe were configured similarly to the cylinder and 
the sphere.  The radius was 3.8 cm as is the 2D cross section of the sphere. Figures 9(a) 
and 9(b) are plots of Re(Zac) and Im(Zac) vs Vbias this time with varying ac frequency at a 
fixed density of ne = 4.4 x 107 cm-3.  This corresponds approximately in density to Figs 
6(a) and 6(b) for the sphere.  We note in these plots that the minima are more distinct 
than in the spherical case.  This is due to the fact that the disk more closely resembles an 
infinite plane surface where we would expect the most clearly defined inflection point 
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IV.4 Comparison of Disk probe and Sphere 
  

Figure 10 is a comparison of the disk and sphere traces for varying density.  The 
applied signal frequency was 1 MHz.  There are five plot pairs corresponding to the five 
densities.  As mentioned above it is clear that the minima are more distinct for the disk 
than the sphere. 
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V.  Appendix A: On Im(Zac) as an indicator of plasma potential  
  
As covered in the earlier paper2, the model is based on dividing the plasma into a sheath 
and a bulk plasma.  The sheath is charged and represented by a resistor Rac and sheath 
inductance Lsh both in parallel with a capacitor, Cs.  The bulk plasma is assumed quasi 
neutral and represented in the low frequency regime by an inductance Lp.  Hence, the 
expression for complex plasma impedance, Z, is 

              
2 2
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where Cs is the sheath ac capacitance3 and Rac is the ac resistance defined above. 
The inductances themselves are approximated as, 
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and, 
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.
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m
L dr
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where me is electron mass, ne(r) is bulk plasma electron density profile from the sheath 
edge outward to infinity and nes(r) is the sheath density profile from the probe surface to 
the sheath edge.  These expressions for spherical geometry are based on the assumption 
that the bulk plasma is cold and collisionless, that the current is carried by the electrons 
only, and that there is a slowly varying radial electric field.  More detail and further 
assumptions necessary to approximate the inductances as above are found in the earlier 
works along with the solution method based on the Poisson equation.  We briefly cover 
the relevant portions of this below. 

 Ignoring Lsh in Eq. (A.2), we find the expression for Re(Zac) used in Eq. 5.  Also from 
Eq. (A.3) we have, 
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If, as in our assumptions allowing us to equate Re(Zac) to Rac we assume (ωRacCs)
2 <<1 

the derivative of Im(Zac) with respect to Vb, we recover Eq. 14 above, 

                                        2Im( ) 2 1
( )pac ac s

ac s
b b ac b s b

LZ R C
R C

V V R V C V
 
  
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   

     A.7 

As noted in Section IIc above, if we are able to ignore the lead term, along with the 
capacitance variation at plasma potential, we can conclude that the LHS of the equation  
vanishes along with ∂Rac/∂Vb .   To understand when it is justifiable to ignore the lead 
term we rewrite Eq. (A.4), 
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where we have used,  
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with φ(r) the potential at position r and φp , the plasma potential.  (For an order of 
magnitude estimate at plasma potential, since there is no sheath, 
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where Lp(φp) ≈ 1μH for ne0 = 2.3 x 108 cm-3.) The derivative in the lead term now is 
expressed, 
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 We plot ∂Lp/∂Vb after solving the integral of Eq. A.8 numerically.  In this particular case 
the plasma potential is taken as φp = Te/2e = 0.35 V.  The first thing we notice about this 
plot is that the function has a minimum at approximately +0.32 volts or slightly less than 
φp.  In addition, we note that the term involving this derivative in Eq. A.7 is multiplied by 
ω.  So clearly the lower the applied frequency, the better the approximation to neglect the 
leading term becomes independently of whether it reaches a minimum at  φp . i.e., if the 
term is small enough to ignore, its behavior is irrelevant.  
(put correct scale values in this plot).. 
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Finally we plot the theoretical dependence of Im(Zac) on density in Figure A.2.  
Since as yet our model is not complete in terms of behavior of the collected current past 
φp in the case where the sheath is very thin compared to probe dimensions, we terminate 
the data just before φp = Te/2e = 0.35 V.  The Figure appears to show Im(Zac) tending 
toward a road maximum but this is not well-defined and certainly not as clear a 
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maximum as is indicated in the data.  However, the dependence of the curves on density 
is observed experimentally and our solution, although not complete, shows predicted 
behavior consistent with observation. 
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Finally, it should be noted that or larger sheaths as mentioned Lsh  can become quite large 
and we are out of the area of validity of the thin sheath model for most, but not all, cases.  
This can be studied further. 
 
VI. Summary 
 
 

We have performed experiments in low electron density and temperature plasma 
to determine the effect on measurements of plasma potential using an algorithm for 
which we hold a US patent.  We have added to that basic method 3 additional indicators 
of plasma potential using both Im(Zac) and the reflection coefficient, Γ, and their 
derivatives.  Although experimentally seen as reaching a maximum at (or near) plasma 
potential, present theory is not complete in justifying this observation.  The results are 
consistent  with alternate methods such Langmuir and emissive probe measurements.  
The new indicators are most useful in low density plasma where it is often difficult to 
isolate plasma potential.  
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